37 research outputs found

    Somatic intronic microsatellite loci differentiate glioblastoma from lower-grade gliomas

    Get PDF
    Genomic studies of glioma sub-types have amassed new disease specific mutations, yet these only partially explain how mutations are linked to predisposition or progression. We hypothesized that microsatellite variation could expand the understanding of glioma etiology. Furthermore, germline markers for gliomas are typically undetectable; therefore we also hypothesize that the predictability of cancer-associated microsatellite loci in germline DNA may support the current hypothesis of a glioma cell of origin. In this study, “normal” germline exome sequenced DNA from the 1000 Genomes Project (n=390) were compared with exome sequences from germlines of subjects with WHO grade II and III lower-grade glioma (LGG, n=136) and WHO grade IV glioblastoma (GBM, n=252) from The Cancer Genome Atlas to identify microsatellite loci non-randomly associated with glioma. From germline data, we identified 48 GBM-specific loci, 42 Lower-grade glioma specific loci and 29 loci that distinguish GBM from LGG (p≤ 0.01). We then attempted to distinguish WHO grade II glioma (n=67) from GBM resulting in 8 informative loci. Significantly, in all glioma grades, comparisons between tumor and matched germline sequences demonstrated no significant differences in these variants (p≥ 0.01). Therefore, these microsatellite loci are considered to be components of grade-specific signatures for glioma which distinguish germline sequences of individuals with cancer from those of individuals that are “normal”. In order to better understand the significance of these loci, we identified biological processes enriched in genes with these variants. Most strikingly, six helicase genes were enriched in the GBM cohort (p≤ 1.0 x10-3). The preservation of these glioma-specific loci could therefore serve as valuable diagnostic and therapeutic markers; especially since the heterogeneity of tumor cell populations can obscure the identification of mutations preceding a metastatic phenotype

    A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs.</p> <p>Results</p> <p>A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 4<sup>9 </sup>(262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different <it>Brucella </it>species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics.</p> <p>Conclusions</p> <p>This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.</p

    Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    Get PDF
    Braun/murein lipoprotein (Lpp) is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT) bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26°C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26°C, the Y. pestis Δlpp mutant cultured at 37°C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA) downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA

    Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure.</p> <p>Results</p> <p>We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays) representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment.</p> <p>Conclusion</p> <p>The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration) in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.</p

    Species-level functional profiling of metagenomes and metatranscriptomes.

    Get PDF
    Functional profiles of microbial communities are typically generated using comprehensive metagenomic or metatranscriptomic sequence read searches, which are time-consuming, prone to spurious mapping, and often limited to community-level quantification. We developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved functional profiling of host-associated and environmental communities. HUMAnN2 identifies a community's known species, aligns reads to their pangenomes, performs translated search on unclassified reads, and finally quantifies gene families and pathways. Relative to pure translated search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied HUMAnN2 to study clinal variation in marine metabolism, ecological contribution patterns among human microbiome pathways, variation in species' genomic versus transcriptional contributions, and strain profiling. Further, we introduce 'contributional diversity' to explain patterns of ecological assembly across different microbial community types

    Overview of the Microbiome Among Nurses study (Micro-N) as an example of prospective characterization of the microbiome within cohort studies

    Get PDF
    A lack of prospective studies has been a major barrier for assessing the role of the microbiome in human health and disease on a population-wide scale. To address this significant knowledge gap, we have launched a large-scale collection targeting fecal and oral microbiome specimens from 20,000 women within the Nurses’ Health Study II cohort (the Microbiome Among Nurses study, or Micro-N). Leveraging the rich epidemiologic data that have been repeatedly collected from this cohort since 1989; the established biorepository of archived blood, urine, buccal cell, and tumor tissue specimens; the available genetic and biomarker data; the cohort’s ongoing follow-up; and the BIOM-Mass microbiome research platform, Micro-N furnishes unparalleled resources for future prospective studies to interrogate the interplay between host, environmental factors, and the microbiome in human health. These prospectively collected materials will provide much-needed evidence to infer causality in microbiome-associated outcomes, paving the way toward development of microbiota-targeted modulators, preventives, diagnostics and therapeutics. Here, we describe a generalizable, scalable and cost-effective platform used for stool and oral microbiome specimen and metadata collection in the Micro-N study as an example of how prospective studies of the microbiome may be carried out

    Multivariable association discovery in population-scale meta-omics studies.

    Get PDF
    It is challenging to associate features such as human health outcomes, diet, environmental conditions, or other metadata to microbial community measurements, due in part to their quantitative properties. Microbiome multi-omics are typically noisy, sparse (zero-inflated), high-dimensional, extremely non-normal, and often in the form of count or compositional measurements. Here we introduce an optimized combination of novel and established methodology to assess multivariable association of microbial community features with complex metadata in population-scale observational studies. Our approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses generalized linear and mixed models to accommodate a wide variety of modern epidemiological studies, including cross-sectional and longitudinal designs, as well as a variety of data types (e.g., counts and relative abundances) with or without covariates and repeated measurements. To construct this method, we conducted a large-scale evaluation of a broad range of scenarios under which straightforward identification of meta-omics associations can be challenging. These simulation studies reveal that MaAsLin 2\u27s linear model preserves statistical power in the presence of repeated measures and multiple covariates, while accounting for the nuances of meta-omics features and controlling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset from the Integrative Human Microbiome (HMP2) project which, in addition to reproducing established results, revealed a unique, integrated landscape of inflammatory bowel diseases (IBD) across multiple time points and omics profiles
    corecore